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a b s t r a c t

Fault population power-law exponents derived from maps are subject to sampling biases, yet simple
methods do not exist for estimating quantitatively the unbiased population characteristics from the
measured (biased) ones. Fault length, maximum throw and geometric moment populations measured in
different sized maps of the same natural fault system are used to test new analytical results. In the
analytical treatment, scale-specific probability density functions of the different measures of fault size
are derived by calculating the probability of sampling faults censored to particular sizes within a small-
scale sample area of a power-law population. The best-fit power-law exponents of these analytically
biased populations match closely the average exponents observed at the same scales in both natural and
synthetic fault maps. The exponents are less at smaller scales, with the maximum throw population
showing the greatest bias and the length population the least. Exponents deduced from fault maps
representative of many published ones are unlikely to be biased by more than 0.1 for the length pop-
ulation, but scaling biases of 0.3 or more are likely for maximum throw populations. Population expo-
nents measured at particular scales can be used to estimate those at different scales using a maximum
likelihood estimation procedure.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Fractures often occur in populations with power-law size
distributions, and departures from this ideal are generally attrib-
uted to influences of mechanical layering or the free surface (e.g.
Marrett et al., 1999; Ackermann et al., 2001; Gillespie et al., 2001;
Soliva and Benedicto, 2005). Graphical methods for plotting and
interpreting power-law size data, and relationships linking pop-
ulation characteristics measured in different sample dimensions
have been available for some time (e.g. Heffer and Beven, 1990;
Marrett and Allmendinger, 1991; Walsh et al., 1991, 1994; West-
away, 1994; Pickering et al., 1995, 1996; Bonnet et al., 2001). This
status is reflected by the declining academic interest for charac-
terising fault and fracture size populations per se since the thematic
double-issue of the Journal of Structural Geology devoted to the
topic (Cowie et al., 1996). Fault populations are still of strong
practical significance since they underpin fault and fracture
network modelling methods for the petroleum, groundwater and
mining industries (e.g. Maerten et al., 2006; Ortega et al., 2006;
Barr, 2007; Dee et al., 2007; Mäkel, 2007; Manzocchi et al., 2008), as
well as providing insight into fault system evolution and
þ353 1 716 2607.
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localisation (e.g. Meyer et al., 2002; Hardacre and Cowie, 2003;
Walsh et al., 2003b, Moriya et al., 2005). Therefore advances in
understanding and characterising scaling systematics of power-law
fault systems remain important.

The purpose of the current work is to understand why the scale-
specific average values of power-law exponents of fault populations
measured in different sized maps of the same fault system
appeared to decrease with scale. Specifically, is this effect evidence
of natural non-power-law fault scaling in a dataset championed for
its power-law faults (Watterson et al., 1996; Bailey et al., 2005), or is
it some form of sampling bias? The question is tackled algebraically,
and the core of this paper is a derivation of probability density
functions (pdfs) of fault size (length, maximum throw and
geometric moment) in areal sub-samples of idealised power-law
systems. This derivation is of interest since the approach can be
modified for other problems, however the results of the derivation
(i.e. the pdfs) confirm that observed scaling biases should, indeed,
be expected. The results are generalised as look-up charts of bias in
power-law exponent as a function of map size, the resolution of the
smallest mapped faults, and the characteristics of the unbiased,
power-law fault system.

Lastly, these analytical results deriving from consideration of
idealised fault systems are tested for a natural system. A maximum
likelihood estimation of the unbiased fault system characteristics
for the natural system based on the populations measured at one
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scale is obtained. The populations measured at other scales are then
compared to those predicted from this estimate using the new
analytical results.
2. Fault populations in the East Pennines Coalfield

2.1. The dataset

The East Pennines Coalfield (EPC) pseudo-seam map (e.g. Wat-
terson et al., 1996; Bailey et al., 2005) derives from a compilation of
1:2500 scale seam abandonment plans in an approximately 1300
km2 area of the Westphalian Pennine Basin of North England
(Fig. 1a). The abandonment plans record the boundaries of work-
ings, seam elevations, fault traces and throws for all worked areas,
which often include vertically stacked seams. Slip vectors for
individual faults are not recorded on the plans, but field evidence
suggests that most of the faults, which dip around 70�, are pure dip-
slip (Walsh and Watterson, 1988a). A few WNW-striking, dextral
strike-slip fault zones post-date the normal faults (Watterson et al.,
1996; Bailey et al., 2005), and only the vertical component of
displacement (i.e. the fault throw) is recorded for these, as well for
the dip-slip faults.

The map is based as far as possible on plans for an extensively
worked seam (the Barnsley/Top Hard), but data from higher or
lower seams were projected to this level to fill gaps between
workings, providing an areally extensive map of fault traces and
throws. Details of the construction of the pseudo-seam map, which
is estimated to have a lateral resolution of the fault traces of ca. 10
m, are given by Watterson et al. (1996) and Bailey et al. (2005).
Various aspects of the fault system have also been described by
Walsh and Watterson (1988b, 1990), Gillespie et al. (1992), Clark
et al. (1999), Bailey et al. (2002) and Walsh et al. (2003a).

The fault resolution of the abandonment plans, and hence of the
pseudo-seam map, is variable and depends primarily on the vintage
of the plans. Resolution in the 87 km2 area studied by Watterson
et al. (1996) is greater than average and faults as short as 200 m,
and with maximum throws as small as 60 cm, are included. The
resolution for maximum throw in the map as a whole is approxi-
mately 1 m, and this map version (Fig. 1a) contains only faults with
maximum throws greater than this value. Individual faults have
throw values recorded at between 2 and 77 positions along their
trace, and the 5297 faults are characterised by 40577 throw values.

The smallest recorded throws on individual traces are between
10 cm and 50 cm, and faults are therefore not mapped to their tips
(i.e. positions of zero throw). Tip resolution effects can significantly
influence fault-trace length populations, and dataset-specific
corrections are required (e.g. Walsh and Watterson, 1988b; Heffer
and Beven, 1990; Yielding et al., 1996). For the present analysis,
each fault was extended by 125 m per tip (250 m per fault),
consistent with the value determined for the EPC faults by Wat-
terson et al. (1996) and Bailey et al. (2005).
2.2 Definitions, assumptions and terminology

Three measures of fault size are used in this paper, fault-trace
length, maximum fault throw and geometric moment. Fault-trace
length (L) includes the tip-correction of 125m per tip. The
maximum fault throw (Tmax) is not necessarily located at the centre
of the fault trace and represents about 94% of the maximum fault
displacement because most faults are normal dip-slip with a z70�

dip. The geometric moment of a fault is the product of average
displacement and fault surface area (King, 1978), and populations of
geometric moment relate directly to the fault-induced strain (e.g.
Scholz and Cowie,1990; Marrett and Almendinger,1991; Westaway,
1994). The two-dimensional, throw-based geometric moment
measure used in this study is defined as:

M ¼
ZL

0

TdL; (1)

where T is the local throw.
This paper considers 2D map-samples of fault systems. A fault is

considered in a sample if at least some of it is present. If a fault is not
completely sampled, only the portion of its trace length and
geometric moment contained in the sample area are considered.
The point of maximum throw for an incomplete fault may or may
not be in the sample area and if not, the maximum throw value
considered is the maximum value present on the portion of fault
trace contained in the area. Throughout this paper, we use the
terms l, u and m to signify the length, maximum throw and
geometric moment of the portion of a fault contained in the area of
interest, and reserve the terms L, Tmax and M to refer to the length,
maximum throw and geometric moment of entire faults (Table 1).
The terms s and S are used as general expressions for, respectively,
the sampled and total sizes of faults. Hence, if a fault is sampled
completely, s ¼ S, but otherwise s < S. No further assumptions are
made in the analysis of the natural dataset, and the three size types
(l, u or m) are considered independently. The algebraic treatments
to follow, however, assume idealised systems in which L, Tmax and
M are linked explicitly.

For a system of randomly positioned faults with power-law
sizes, a general expression of the number of faults with sizes
between s and s þ ds contained in an area A2

1 is given by:

nðs;A1Þ ¼ asA2
1s�cs ds (2)

where constant as reflects the overall abundance of faults, and
exponent cs the relative frequencies of faults of different sizes (e.g.
Davy, 1993; Berkowitz et al., 2000).
2.3. Scale-specific population exponents

The log-interval method (e.g. Pickering et al., 1995) is used to
estimate power-law exponents, cs, from the map samples (Fig 1). The
log-interval plot is essentiallya histogram of the logarithm of fault size
which is characterised by a linear trend between log(frequency) and
log(size) with a slope of �(cs�1) for a power-law distribution. Over-
lapping bins are used in the histogram constructions, with the size of
each bin set at 5% of the total scale-range of interest, and the spacing
between the bin centres set at either 12.5% or 25% of the bin size.

The entire dataset shows reasonably tight power-law frequency
distributions for length (Fig. 1b) with cl¼ 2.76 for 800 m < l < 6000
m , for maximum throw (Fig. 1c) with cu¼2.22 for 1.3 m < u < 50 m
and for geometric moment (Fig. 1d) with cm ¼ 1.70 for 200 m2 < m
< 600,000 m2. We defined six 10� 10 km areas with complete map
coverage (Fig. 1a) and subdivided each into four 5 � 5 km areas and
sixteen 2.5 � 2.5 km areas. We censored all faults at the edges of
each area, and calculated cl, cu and cm by examining each log-
interval frequency plot (two examples at each scale are shown in
Fig. 1b–d), setting area-specific upper and lower size limits to the
power-law portion of the sample population, and performing linear
regression for that portion.

The variability in cs as a function of map size is shown in Fig. 2.
All populations included in this plot contain at least 25 faults and
had correlation coefficients (R2) greater than 0.75. Of the 96 2.5 km
areas, 66 length populations, 54 maximum throw populations and
61 geometric moment populations meet these conditions, as do all
populations measured for larger areas. The exponents measured
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Fig. 1. (a) Map of the East Pennines Coalfield showing all recorded faults with maximum throws>1 m. Faults are mapped up to the edges of the mine workings, shown as the shaded
area. Sample areas for the present analysis are shown as solid boxes. Dashed boxes show areas described by Watterson et al. (1996) in the north of the map and by Bailey et al. (2002) in
the south. The circles show Barnsley (B), Doncaster (D), Rotherham (R) Maltby (Mb), Wakefield (W) and Mansfield (M). The map is referenced to the UK National Grid. Length (b),
maximum throw (c) and geometric moment (d) populations for sample areas of the fault map. Each plot shows populations in the entire area (þ), and for two 10 km�10 km (B,C), 5 km
� 5 km (,,-) and 2.5 km � 2.5 km (6,:) sub-areas. The dashed vertical lines indicate the size limits used to determine the population exponents for the entire area.
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from the entire dataset are assigned a nominal sample size of
A1 ¼ 45 km in Fig. 2. These exponents are consistently greater
than the averages measured in the smaller sample areas, but this
observation should be treated with caution since the exponents
for the entire dataset derive from a highly irregular map (Fig 1a)
with extremely subjective boundaries (many of the mine
workings are bounded by large faults). In the smaller areas with
complete map coverage, the length population exponent (cl) does
not show a systematic trend with sample scale, and the scale
specific mean value has a narrow range between 2.59 � 0.28 to
2.67 � 0.4. In contrast, both mean cu and mean cm decrease with
decreasing scale, with cu ranging from 2.19 � 0.12 at 10 km, to



Table 1
Nomenclature.

Symbol Meaning

A0 The edge of a large square map
A1 The edge of a square area contained inside A2

0
L Fault-trace length
T The throw at a position on a fault trace
Tmax The maximum throw on a fault trace
M Fault geometric moment
S General term for the total size of a fault (S is L, Tmax or M)
l The length of the portion of a fault contained in A2

1
u The maximum throw on the portion of a fault contained in A2

1
m The geometric moment of the portion of a fault contained in A2

1
s General term for the size of the portion of a fault in A2

1(s is l, u or m)
B, n Constant and power-law exponent relating Tmax to L
p(L,A1jX) The conditional probability that a fault in A2

0 is sampled in A2
1 subject to

censoring type X
p(L/s) The probability that a fault of total length L is censored to a size s in A2

1
n(S,A0) The number of fault centres in A2

0 with uncensored sizes in the range S
to SþdS

n(s,A1) The number of faults in A2
1 with censored or uncensored sizes in the

range s to sþds
N(s,A1) The cumulative number of faults in A2

1 with sizes �s
Nðs;A1Þ The expected cumulative number of faults in A2

1 with sizes � s
f ðs;A1Þ The probability density function (pdf) of fault size in A2

1
aL; cL Frequency constant and power-law exponent of the distribution

nðL;A0Þ
cs The power-law exponent of the biased distribution nðs;A1Þ
cs The expected best-fit power-law exponent of nðs;A1Þ.
scs The standard deviation of the distribution of cs

N The total number of faults in A2
1

N The expected total number of faults in A2
1

sNðs;A1Þ¼1 The largest expected fault in A2
1

Lx A length term used in the analyses (see Table 2)
Lmax; Lmin Maximum and minimum fault lengths present in A2

0
maxL;minL Maximum and minimum fault lengths associated with specific types of

censoring.
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2.03 � 0.26 at 2.5 km, and cm ranging from 1.67 � 0.06 at 10 km,
to 1.60 � 0.14 at 2.5 km.

Two possible explanations exist for the decrease in mean
exponent of the maximum throw and geometric moment pop-
ulations with decreasing scale: bias on the estimation of the power-
law exponent, and biases introduced by sampling. Pickering et al.
(1995) investigated bias in estimating power-law exponents from
natural and synthetic data. Although the log-interval method is in
most cases the best approach, all methods are to some extent
biased, producing an exponent which is progressively smaller for
samples containing progressively fewer data. The bias is a consis-
tent percentage of (cs�1) for a particular sample size, and, for our
Fig. 2. Population exponents for fault length (x), maximum throw (C) and geometric
moment (þ), for sample sub-areas. Also shown are the exponents measured in pop-
ulations of the entire area (assigned a nominal scale of 45 km).
analysis, should therefore be a function of scale rather than pop-
ulation type. Since our subarea exponents do not show this rela-
tionship (Fig. 2), we infer that the scale-dependencies are instead
caused by sampling bias.

2.4. Sampling biases

Four types of sampling bias are recognised: orientation, trun-
cation, censoring and size (e.g. Zhang and Einstein, 2000). Orien-
tation bias is the over or under sampling of fractures because of
their orientation with respect to the orientation of the sample area.
This bias is not responsible for the decreases in exponent value with
decreasing sample-area size because the same orientation of
samples is used at all scales.

Truncation bias refers to effects caused by a systematic under-
representation of smaller faults in the sample. If the sample has
a well-defined lower size limit, the limit of the power-law distri-
bution is sharp on a log-frequency plot, and truncation does not
cause a problem. For example, the throw cut-off applied during
map construction yields a sharp lower limit to the maximum throw
power-law distribution at 1.3 m (Fig. 1c). By contrast if smaller
fractures are instead gradually under-represented rather than
abruptly omitted, the effect of this under-representation is
a gradual decrease in power-law slope. For example, the fault
length population for the entire EPC (Fig. 1b), shows a gradual
decrease in slope between about 800 m and 500 m before dropping
off sharply below 500 m. For this population, therefore, the effec-
tive limit of the distribution occurs at 800 m, and inclusion of
smaller faults in the analysis would result in the determination of
a biased power-law exponent. For this case, truncation bias is
avoided by selecting a lower size limit for the population which
excludes the effects of the bias (e.g., Fig. 1b). The vertical lines in
Fig. 1b–d indicate the size limits used to determine the power-law
exponents for the entire EPC samples. For smaller sample areas,
each sample was inspected visually to define sample-specific upper
and lower size cut-offs between which the exponents were
measured, eliminating truncation bias as a concern.

Censoring bias refers to incomplete sampling of individual faults
because only a portion of the fault occurs in the sample area. Faults
which are much smaller than the width of the sample are less likely
to be affected by censoring, but the probability of sampling both
fault tips decreases to zero as the fault length approaches the width
of the sample area. Censoring bias therefore results in samples
containing relatively fewer longer faults, and so results in artifi-
cially increased power-law exponents. Methods exist to estimate
the distribution of total trace lengths from the censored distribu-
tion, for example the Kaplan-Maier method, which does not
assume an underlying distribution (e.g. Laslett, 1982; Odling, 1997).
It is sometimes assumed that the distributions deriving from such
corrections (which have lower cs than the censored distributions)
should be representative of the size distribution for a larger area.
However, since there is also greater probability of sampling longer
faults in finite sample areas (size bias), this type of correction
strategy for censoring bias would over represent the larger faults
because it does not consider size bias (e.g. Yielding et al., 1996;
Bonnet et al., 2001). Thus, we did not apply this correction strategy,
but instead considered the implications of censoring and size biases
simultaneously.

Censoring and size bias have opposing effects and therefore,
must to some extent cancel each other. In the case of fault-trace
length populations, available evidence suggests that they do so
fairly effectively in many cases, implying that uncorrected pop-
ulations measured in finite sample areas may have power-law
exponents representative of the underlying population. For
example, Yielding et al. (1996) measured length populations in
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samples of an idealised power-law system, and found that the
censored and size biased population exponent is close to the true
value. For a fault trace map derived from seismic interpretation,
Belfield (1992) found that the mean cl of four sub-areas was the
same as cl in the whole area. Similarly, an approximately scale
independent average cl value is observed for the areas of the EPC
with complete map coverage (Fig. 2). The greater value for cl

obtained from the whole map area compared to the scale-inde-
pendent mean values for the complete smaller samples (Fig. 2) is
consistent with a dominance of censoring bias over size bias in the
incompletely sampled whole map arising from the large, but
uneven, area of mine workings (Fig. 1). Given that for the maximum
throw and geometric moment populations, the mean exponent
decreases for smaller sample areas (Fig. 2), we infer that size bias is
more important than censoring bias for populations of these
measures of fault size.

Whilst it is desirable in practice to know whether a measured
population exponent is biased and by how much, it is only of
secondary interest to know the individual contributors to the total
bias. For this reason, we focus in this paper on the total bias (i.e.
including effects of both censoring and size bias) of population
exponents, and use the term scaling bias to describe how the total
bias changes in maps at different scales.
3. Analytical determination of biased fault populations

Our approach for assessing generally scaling biases on power-
law fault population exponents is to derive probability density
functions (pdfs) of fault size, which include the bias. An analytical
derivation has advantages over numerical approaches because: (a)
estimation bias is not present in characterising the distribution
because it is calculated not estimated, (b) multiple realisations are
not required since the pdf represents the ideal mean fault size
distribution and (c) the pdf can be evaluated at different scales and
for different large-scale systems to establish general trends in bias.

The idealised fault system geometry used in the analytical
treatment is described in Section 3.1. In Section 3.2, a synthetic map
constructed using the same assumptions is examined. Analysis of
this map using the same methods as for the EPC map provides
a benchmark against which the analytical results, derived in
Section 3.3–3.7, can be checked (Section 3.8). Finally, in Section 3.9
the results of the analysis are discussed from the perspective of
establishing what scaling biases in population exponent are likely
to be present in map samples of a representative range of fault
systems.

3.1. Idealised fault system geometry

A power-law population of fault-trace lengths is assumed to be
contained in a large square area of edge length A0, and faults are
assumed to be oriented with equal probability in one of the two
orientations parallel to the edges of this area (Fig 3a). The objective
of the analysis is to derive the expected distributions of censored
fault length, maximum throw and geometric moment (l, u and m)
measured in a smaller area A2

1 contained within A2
0.

Following Eq. (2), the number of fault centres contained in A2
0

which have uncensored lengths in the range L to L þ dL is given by:

nðL;A0Þ ¼ aLA2
0L�cL dL: (3)

The length and maximum throw of the faults (L and Tmax) are
linked through the usual expression (e.g. Gillespie et al; 1992;
Schultz et al., 2008):

Tmax ¼ BLn; (4)
where B and n are constants. We assume triangular throw profiles
(e.g. Manighetti et al., 2001; Manzocchi et al., 2006) along the
length of the fault traces, ranging from T¼Tmax at the centre of the
trace to T¼0 at the two tip points. Therefore:

M ¼ 1
2

LTmax ¼
1
2

BLnþ1: (5)

These relationships between the various fault size measures
(Eqs. (4) and (5)) were not assumed explicitly for the EPC pop-
ulations in the previous section, but the EPC faults follow this
scaling with scatter (Bailey et al., 2005). Manipulation of Eqs. (2)–
(5) give the exponents of the maximum throw and geometric
moment populations in A2

0. These are:

cTmax
¼ ðcL þ n� 1Þ=n (6)

cM ¼ ðcL þ nÞ=ðnþ 1Þ (7)

3.2. Case example

A synthetic map (Fig 3b) based on this idealisation was con-
structed accounting for edge effects (see Appendix A for details).
Populations were measured in two sets of sub-areas of the map
oriented parallel or at 45� to the faults, and ranging in size from A1

¼ 1.75 km to A1 ¼ 28 km. Average population exponents (Fig 3c)
decrease gradually with diminishing scale for all three size
measures (l, u and m). A comparison of the results for the two map
orientations shows no discernable orientation bias. As in the EPC,
the maximum throw population exponents are the most scale-
sensitive (Fig. 2). Since all three population types are biased to some
extent in the synthetic case (Fig 3c), it is possible that the length
populations are also biased in the EPC, but that the bias is not
recognised due to the natural variability of the exponents (Fig 2). In
any case, this analysis shows that the observation of decreasing
population exponent with decreasing scale observed for some size
measures in EPC (Fig 2) is not a function of non-power-law scaling,
since qualitatively similar trends are observed in the fully-charac-
terised synthetic system built with known assumptions (Fig 3c).
The remainder of this section aims to predict analytically trends in
mean population exponent.
3.3. Analytical method

In Table 2, we identify censoring geometries (A–E) which limit
the size of a fault which is wholly or partially contained in the sample
area of interest (A2

1, Fig. 3a). For censoring type A, the fault is entirely
contained in A2

1, and s¼S. For type B, one tip and Tmax are in A2
1. For

type C, one tip is in A2
1 but Tmax is not. For type D, both tips are outside

A2
1 but Tmax is in it. For type E, both tips as well as Tmax are outside A2

1.
The censored geometry is a function of the relative sizes of L and A1,
and the position of the fault centre relative to the sample area (Fig. 4).
Three size ranges must be considered; small faults with L � A1

(Fig. 4a), medium faults with A1 < L � 2A1 (Fig. 4b) and large faults
with 2A1 < L (Fig. 4c). The probabilities of sampling faults with each
censoring type for each size range can be determined from the sizes
of the shaded areas in Fig. 4, and are stated in Table 3 using the term
pðL;A1jXÞ, where X is censoring type (X ¼ A, B, C, D or E).

The sampled sizes (s, where s ¼ l, u and m) for each censoring
type are functions of B, n, L, A1 and Lx (Table 2). The length-term Lx is
defined for each censoring type in Table 2, and depends on the
location of the fault centre relative to the edges of A2

1. When s
depends on Lx, there is a range of possible censored outcomes, and
therefore a probability of obtaining a particular outcome within
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this range. This probability, which we term p(L/s)(i.e. the proba-
bility that L is censored to s) can be calculated using Lx (see
Appendix B). In some cases, s does not depend on Lx (Table 2) and
only one possible outcome exists which may or may not be
censored and for which p(L/s)¼1.

The total number of faults in A2
1 with sizes between s and sþds

can be determined from pðL;A1jXÞ and p(L/s) using the
expression:

nðs;A1Þ ¼
XX¼ E

X¼A

ZmaxL

minL

nðL;A0ÞpðL;A1jXÞpðL/sÞ; (8)

where the integral evaluates all cases for a censoring type and
the summation considers all censoring types. n(L, A0) is simply
the total number of faults of total length L with centres in A2

1,
given by Eq. (3).
3.4. The maximum throw distribution

The probability that L is censored to u, required in Eq. (8), is (see
Appendix B):

pðL/uÞ ¼ du=
�
BLn�;

for 0 < u � BLn and Lmin < L < 2A1; (9a)

pðL/uÞ ¼ du=
�

2A1BLn�1
�
;

for 0 < u � 2A1BLn�1 and 2A1 < L < Lmax; (9b)

pðL/uÞ ¼ du=
�
ðL� 2A1Þ

�
BLn�1

��
;

for 2A1BLn�1 < u � BLn and 2A1 < L < Lmax (9c)

A graph (Fig. 5) can be constructed to determine the limits of
integration and the limits of validity of u in n(u, A1) (Eq. 8). Each
shaded area in the plot represents a combination of: (a) censoring
type, indicated by differences in shading; (b) uncensored fault size-
range, indicated by values on the X axis; and (c) censored maximum
throw size-range, indicated by values on the Y axis of Fig. 5. The
limits of integration for Eq. (8) are either a constant (L¼Lmin, A1, 2A1

or Lmax), or the equations L¼(u/B)1/n or L¼(u/(2BA1))1/(n�1). The limits
of applicability of the resultant n(u,A1) calculated with these limits
are either the constant values of u labelled on the Yaxis (Fig. 5), or the
equations u¼BLn and u¼2BA1Ln�1 (Fig. 5). The arrowed portions of
the relationship L¼(u/B)1/n represent the locations of censoring
geometries A, B and D for which integration in Eq. (8) is not neces-
sary since minL¼maxL¼(u/B)1/n.

Fig. 5 shows that Eq. (8) must be applied using five separate
scale-ranges to evaluate the full scale-range of possible censored
maximum throws ð0 < u < BLn

maxÞ. For example, consider a value of
u in the scale-range BAn

1 < u < 2nBAn
1 (Fig. 5). The total number of
Fig. 3. (a) An ideal power-law fault system is assumed to be present in a large square
area of size A2

0 with faults equally oriented in two populations parallel to the edges of
A0 and positioned randomly. Ideal fault populations are calculated for a smaller square
area of size A2

1. (b) Synthetic system of randomly positioned power-law sized faults.
The thicker lines show the edges of sample areas (with edge length of A1 ¼ 28 km)
oriented parallel to each fault set and rotated 45� to them. (c) Mean, median and
percentiles of length, maximum throw and geometric moment population exponents
measured in sub-samples of the two areas highlighted in (b). The percentiles and the
median values are for the set of sub-samples with edges parallel to the faults, and the
set of measurements from the rotated samples are similarly variable. The labelled
horizontal lines show the parent population exponents.



Table 2
Sampled length, maximum throw and geometric moment for the five censoring types as a function of the length term Lx . The fault is assumed to have a triangular throw profile,
and the shaded regions indicate the portion of the fault sampled by each censoring type.

Censoring Type Sampled Length (l) Sampled Maximum Throw (u) Sampled Geometric Moment (m)

Type A L BLn 1
2BLnþ1

Type B
xLxL Lx BLn 2BLnLx þ BLn�1L2

x � 1
2BLnþ1

Type C xLxL Lx 2BLn�1Lx BLn�1L2
x

Type D
1A xL1A xL A1 BLn 2BLnðA1 þ LxÞ � BLn�1ðA1 þ LxÞ2 � 1

2BLnþ1

Type E

xL1A

A1 2BLn�1ðLx þ A1Þ 2BLn�1A1Lx þ BLn�1A2
1

T. Manzocchi et al. / Journal of Structural Geology 31 (2009) 1612–16261618
faults with sampled maximum throws in the range u to u þ du, for
any u in this range, is given from Eq. (8):

nðu;A1Þ ¼
Z2A1

ðu=BÞð1=nÞ

�
aLA2

0L�cL dL
� LA1

A2
0

! �
du
BLn

�

þ
ZLmax

2A1

�
aLA2

0L�cL dL
� 2A2

1

A2
0

! 
du

2A1BLn�1

!

þ
�

aLA2
0L�cL dL

� A2
1

A2
0

!
(10)

where the first and second terms (1 and 2 in Fig. 5) refer to medium
sized faults (A1< L� 2A1) and large faults (2A 1< L� Lmax) subjected
to censoring type C, and the third term (3 in Fig. 5) refers to faults
subjected to censoring types B and D and for which p(L/s)¼ 1 and
u ¼ BLn (Table 2).

Simplifying the first two terms, and integrating with respect to
L, gives the number of faults in A2

1 which have a censored maximum
throw in the range u to u þ du:

aLA1du
Bð2� cL � nÞ

h
L2�cL�n

max � ðu=BÞðð2�cL�nÞ=nÞ
i
:

The third term is expressed in terms of L and dL, rather than
the desired u and du. Converting, we see that these faults have u
¼ BLn (Table 2), so L ¼ (u/B)(1/n) and dL ¼ (du/nB)(u/B)((1�n)/n).
Replacing these relationships, we obtain the number of faults in
A2

1 that have an uncensored maximum throw in the range u to
u þ du:

aLA2
1ðu=BÞðð1�cL�nÞ=nÞdu

Bn
:

Applying this method to all regions in Fig. 5, and simpli-
fying, gives the frequency distribution of faults in A2

1 with
maximum throws in the range u to uþdu, for the full range
of u:

nðu;A1Þ ¼
aLA1du

Bð2� cL � nÞ
h
L2�cL�n

max � L2�cL�n
min

i

for 0 < u � BLn
min (11a)

nðu;A1Þ ¼
aLA1du

Bð2� cL � nÞ
h
L2�cL�n

max � ðu=BÞðð2�cL�nÞ=nÞ
i

þ
aLA2

1ðu=BÞðð1�cL�nÞ=nÞdu
Bn

for BLn
min < u � BLn

max (11b)

3.5. The trace length distribution

The censored length (l) distribution can be determined in
a similar manner to the censored maximum throw (u) distribution
(Eq. (11)). The main difference is that censoring types D and E
censor faults to a maximum possible length, l ¼ A1 (Table 2). For
these faults, p(L/s) ¼ 1, and Eq. (8) simplifies to:

nðl ¼ A1;A1Þ ¼
ZLmax

A1

nðL;A0ÞpðL;A1jDÞ þ
ZLmax

2A1

nðL;A0ÞpðL;A1jEÞ

where n(l ¼ A1,A1) is the number of faults of censored length A1

contained in A2
1. Applying the full derivation gives the complete

frequency distribution of faults in A2
1 with maximum lengths in the

range l to l þ dl:

nðl;A1Þ ¼
2aLA1dl
ð1� cLÞ

h
L1�cL

max � L1�cL

min

i
for 0 < l < Lmin: (12a)



A B C D E

a b c

Fig. 4. Fault censoring type (see Table 2) as a function of the location of the fault centre within or adjacent to A2
1 and the relative sizes of L and A1. The fault centre is shown as the dot

on the example fault trace. (a) L � A1 (b) A1 < L � 2A1. (c) 2A1 < L. The illustrated geometries apply for both fault orientations.
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nðl;A1Þ ¼
2aLA1dl
ð1� cLÞ

h
L1�cL

max � l1�cL

i
þ aLA2

1l�cL dl

�aLA1l1�cL dl for Lmin � l < A1; (12b)

nðl;A1Þ ¼
aLA1

ð2� cLÞ

h
L2�cL

max � A2�cL
1

i

�
aLA2

1
ð1� cLÞ

h
L1�cL

max � A1�cL
1

i
for l ¼ A1: (12c)

3.6. The geometric moment distribution

The geometric moment (m) distribution is considerably less
amenable to an algebraic solution, and attempts to calculate p(L /

m) result in some intractable integrals. Therefore frequency
distributions of m were determined numerically (see Appendix C
for details). The procedure was checked by applying the same
numerical method to determine the maximum throw distribution,
and comparing this to the analytical distribution defined in Eq. (11).

3.7. Probability density functions of fault size

Integration of either Eq. (11) or (12) yields the expected total
number of faults in A2

1. We term this number N, and it is:
Table 3
Conditional probability pðL;A1jXÞ that a fault of length L is sampled in A2

1 subject to each
Table 2) associated with each censoring type, for small ðLmin � L � A1Þ, medium ðA1 � L

Censoring Type Lmin � L � A1 A1 < L < 2A1

pðL;A1jXÞ Lxmin Lxmax pðL;A1jXÞ

Type A
ðA2

1 � LA1Þ
A2

0

– – 0

Type B
LA1

A2
0

L
2

L
ð2A2

1 � LA1Þ
A2

0

Type C
LA1

A2
0

0
L
2

LA1

A2
0

Type D 0
ðLA1 � A2

1Þ
A2

0

Type E 0 0
N ¼
aLA2

1
ð1� cLÞ

�
L1�cL

max � L1�cL

min

�
þ aLA1

ð2� cLÞ
�

L2�cL
max � L2�cL

min

�
(13)

The probability density function of s in A2
1 (f(s)) is, by definition,

f ðsÞ ¼ nðs;A1Þ
Nds

(14)

3.8. Distributions for the example synthetic map

Analytically derived distributions for the synthetic system
(Fig. 3b) are examined for sample sizes A1 ¼ 1.75 km, 7 km and 28
km. Both the discrete and cumulative form of the distributions are
shown (Fig. 6). The trace length pdfs (Fig. 6a) show an apparently
stable power-law between Lmin and (a scale specific) lmax, with an
increased incidence of faults at lmax reflecting those which
completely cross the area (lmax¼ A1; Eq. 12c). A close examination is
needed to show that the distribution is not a perfect power-law, as
the local exponent varies only slightly over the length-scales
covered by the distribution (Fig. 6d). The maximum throw and
moment pdfs (Fig. 6b,c) are more obviously non-power-law, and
the local power-law exponents of these distributions tend towards
infinity as the fault size tends towards the (vanishingly unlikely)
largest possible size.
censoring type (X¼ A–E), and the minimum and maximum possible values of Lx (see
� 2A1Þ and large ðL � 2A1Þ faults.

2A1 < L < Lmax

Lxmin Lxmax pðL;A1jXÞ Lxmin Lxmax

0

L
2

A1 0

0
L
2

2A2
1

A2
0

0 A1

0
ðL� A1Þ

2
A2

1

A2
0

ðL� 2A1Þ
2

ðL� A1Þ
2

ðLA1 � 2A2
1Þ

A2
0

0
ðL� 2A1Þ

2



Fig. 5. Graphical determination of the limits of integration of Eq. (8) when applied to
maximum throw. Lines (1) and (2), and point (3), show the total fault lengths which
give rise to a fault with a censored size u in the range BA1

n <u < 2nBA1
n. See text for

discussion.
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Different best-fit power-law exponents would be inferred for
the three population types depending on which form of the
distribution (discrete or cumulative) is used, and the size interval
a b

d e

Fig. 6. (a) Analytically derived censored length, l; (b) maximum throw, u; and (c) geometric m
(thinnest lines). The three upper sets of curves shown the cumulative frequency distributions
the cumulative frequency distributions at the largest expected fault in a representative sample
the cumulative frequency distributions (solid lines) and the pdfs (dashed lines). The dashed v
which the representative exponent is determined (smin < s<sN(s,A1) ¼ 1), and the largest possib
from which it is estimated (Fig. 6d–f). A representative sample of
the system is unlikely to contain any faults larger than sN(s,A1)¼1, the
size corresponding to a cumulative frequency of 1 (Fig. 6), but is
likely to contain smaller faults. Therefore the most representative
range for estimating power-law exponents is smin < s < sN(s,A1)¼1.
This range is highlighted for the case A1 ¼ 7 km in Fig. 6. The
exponent can be estimated more reliably when the distribution is
less variable. For the trace length population, cl estimated from the
discrete distribution is less variable over the representative scale-
range (e.g. Fig. 6d), while cu and cm are less variable if they are
estimated from the cumulative form of the distribution (Fig. 6e,f).

The estimated exponents derived from the analytical treatment
(using linear regression of the least variable form of the distribution
over the representative range) match well the average exponents
measured in the synthetic map for cu and cm, but are less accurate
for cl (Fig 7). We ascribe this poorer match for cl to a combination of
a lower susceptibility of cl to scaling bias, which was observed in Fig
3c for the synthetic map as well as predicted from the pdfs, and of
a greater natural variability in value (Fig 3c), resulting in a greater
uncertainty on the measured mean value.

The good overall match between predicted scale-specific cs and
that measured in the synthetic map validates the analytical method
for determining the scale-specific population exponents (Fig. 7).
The results therefore permit estimation of scaling biases over
c

f

oment, m distributions for sub-areas with A1¼28 km (thickest lines), 7 km and 1.75 km
and the lower curves show the pdfs. The dashed horizontal lines (at N(s,A1)¼ 1) intersect

(i.e. at sN(s,A1) ¼ 1). (d–f) The local exponents for the samples with A1¼7 km derived from
ertical lines (a–f) are specific to the distributions for A1¼7 km, and show the ranges over
le sampled fault (smax).



Fig. 7. Comparison between the best-fit exponents from the analytical distributions
(i.e. Fig. 6, and equivalent for scales not shown in Fig. 6) and the mean values of the
measured populations in the synthetic map (i.e. Fig. 3c). The arrows indicate the effect
of decreasing sample size from 28 km to 1.75 km in each population type.
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a range of possible map samples without needing to measure
population exponents in many sub-areas of many synthetic maps.
3.9 General trends in fault population scaling biases

The length population depends on aL, cL, A1, Lmax, Lmin (Eq. 12),
and all these variables potentially influence bias in the fault-trace
length power-law exponent (cl). The maximum throw and
geometric moment populations depend additionally on B and n
(e.g. Eq. (11)), but B is found not to influence population bias.

It is appropriate when generalising effects to consider repre-
sentative values of variables first, and it is convenient to consider
the length terms as ratios. The ratio between the smallest
adequately sampled fault-trace length (Lmin) and the edge of the
map (A1) relates to resolution, and the compilation of Bonnet et al.
(2001) shows that published population exponents derive from
samples for which this ratio ranges from 1/3 to 1/200, and have
a median value of 1/30. Parameters aL and cL are approximately
linked (with a couple of outliers) for fault systems by the rela-
tionship (Fig. 8):

aLz104:67cL�12:933 (15)

An approximate link between these parameters is not surprising
since aL must change if cL is changed while fault density is held
Fig. 8. Compilation of aL vs. cL for fault maps (C are data compiled by Bonnet et al.,
2001; B is the most likely case for the EPC from this paper). The solid line shows the
representative trend (Eq. (15)), and the dashed lines are for systems with one order of
magnitude more or less faults than this case.
constant (e.g. Westaway, 1994), and the form of the change will
depend on the precise definition of fault density. Values of n
measured from natural faults range from about 0.5 to 1.5 (e.g. Gil-
lespie et al., 1992; Schultz et al., 2008), and a value of n ¼ 1 is
representative of many systems.

Fault-trace map samples with Lmin/A1¼1/30, n¼ 1, and with aL and
cL linked by Eq. (15), are therefore representative of those reported in
the literature. Fault population scaling bias for these representative
samples, as a function of the remaining variables (cS and the ratio
A1/Lmax), are shown in Fig. 9a–c. Bias is usually<0.1 for the length and
moment populations, but can be up to about 0.35 for u.

Fig. 9d–f examines the biases as a function variables kept
constant in Fig. 9a–c, for systems with cL¼2.5, Lmax/A1 ¼ 100 and
n ¼ 1. The axes of Fig. 9d–f are the ratio Lmin/A1, and a multiplier of
aL spanning the range indicated in Fig. 8. Bias is greater for lower
resolution (i.e. higher Lmin/A1) or denser (i.e. higher aL) systems, and
reaches a maximum for the l populations once aL is sufficiently
large so that at least one fault with l ¼ A1 can be expected. Since
umax and mmax are unbound (Fig. 6), no limit to the trend for bias as
a function of aL exists in these populations (Fig. 9e, f). Effects on bias
of the final variable (n; shown for completeness in Fig. 9g, h) are
smaller for characteristic systems than the other system variables.

These results (Fig. 9) indicate that scaling biases can be significant
for maximum throw and to a lesser extent geometric moment pop-
ulations. For trace-length, a bias>0.1 is only likely in unusual systems.
The biases have complex dependencies and we have mapped out
some of these dependencies in Fig. 9, but the expected bias in any
particular u or l population can be assessed directly by evaluating the
pdfs (Eqs. (11) and (12)). The maximum throw population is
approximately three times as prone to bias than the length or moment
populations. Of particular note is the tendency for samples of greater
density fault systems to be more biased than samples of lesser density
ones. These samples will contain more data and might therefore be
considered more reliable. However, although estimation bias might
be smaller for such samples, scaling bias will be greater.

4. Application to the East Pennines Coalfield faults

The analytical results are tested for a natural system using the
East Pennines coal-field fault populations (Figs. 1 and 2). A
maximum likelihood estimation (MLE) method is used to estimate
the unbiased parent population using the six samples with A1 ¼10
km, and the observed populations in the smaller areas (A1¼2.5 and
5 km) are then tested against the scale-specific predictions deduced
from this maximum likelihood parent population. The test is
considered successful if the mean observed scale-specific expo-
nents (Fig. 2) are predicted to within a small fraction of their
variability.

The MLE method calculates the probability that a set of obser-
vations (in this case the populations measured in areas with A1¼10
km; Fig. 10) are the outcome of a particular input condition (in this
case a parent fault system characterised by particular values of cL,
aL, B, n, Lmax and Lmin). The method relies on evaluating the prob-
ability for different input conditions, and identifying the condition
that yields the greatest probability. This condition is said to be the
maximum likelihood estimate.

Our analysis uses four summary properties for each sample to
evaluate the probability of the sample deriving from a particular
parent population. These properties are the exponents of the trace
length and maximum throw populations (cl and cu), the number of
faults longer than 2 km in the sample (N(l � 2 km,A1)), and the
number of faults with maximum throws larger than 10 m in the
sample (N(u� 10 m,A1)) . These sizes (2 km length and 10 m throw)
are used as they are close to the centre of the total range of fault
sizes (Fig. 10). Hence N(l � 2 km,A1)and N(u � 10 m,A1) are unlikely
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Fig. 9. Predicted scaling bias (cS � cs) for systems of randomly distributed power-law sized faults. Bias in (a) fault-trace length, (b) maximum throw and (c) geometric moment
populations for representative systems (Lmin/A1 ¼ 1/30, n ¼ 1, aL given by Eq. (15)) as a function of sample scale (A1/Lmax) and unbiased exponent (cS). (d–f) Bias as a function of
sample resolution (Lmin/A1) and aL, for systems with A1/Lmax ¼ 1/100, n ¼ 1 and cL ¼ 2.5 (d), cTmax ¼ 2.5 (e) or cM ¼ 1.75 (f). (g–h) Bias as a function of n and cS for systems with Lmin/
A1 ¼ 1/30, A1/Lmax ¼ 1/100, and aL given by Eq. (15). See text for discussion.
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to be affected by truncation bias, but are still large enough to be
representative of the fault populations (they average about 30
faults). The analysis assumes throughout that Lmin ¼ 400 m.

Each input condition to be tested (an assumed parent pop-
ulation) is characterised by an ideal distribution at the scale of
interest (e.g. Fig. 6), with ideal exponents (cs), and with ideal
expected numbers of faults larger than particular sizes (Nðs;A1Þ). A
random sample of the distribution will have values of cs and N(s,A1)
which will generally not be the same as the ideal expectations. The
distribution of cs around cs , and of N(s,A1) around Nðs;A1Þ, are
required for calculating the probability that a sample derives from
the parent system. Exponent cs follows a normal distribution,
characterised by a mean (cs) and a standard deviation ðscs Þ, while
N(s,A1) follows a Poisson distribution, which is a function only of
Nðs;A1Þ. Details of the two distributions are given in Appendix D.

Each of the six EPC areas with A1¼10 km has particular values of
cl, cu, N(l � 2 km,A1) and N(u � 10 m,A1). The probability that any
one of the measured exponents derives from an assumed parent
population is termed pðcsx Þ where csx is the exponent for sample x,
and is calculated by subtracting the cumulative probability value at



a b

Fig. 10. Cumulative frequency populations for (a) length and (b) maximum throw, for the six 10 km sample areas of the East Pennines Coalfield fault map (thin lines). The thicker
lines show the maximum likelihood case sampled to this scale. The dashed vertical lines show the minimum fault sizes assumed in the analysis and the sizes (l ¼ 2 km, u ¼ 10 m)
used to constrain the solution. See text for discussion.
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csx � 0:05 from the cumulative probability value at csx þ 0:05 (these
cumulative probabilities are calculated from cs and scs ). The prob-
ability that N(s,A1)x (the measured number of faults for sample x)
derived from an assumed parent population is termed p(N(s,A1)x),
and is determined from Nðs;A1Þ using the Poisson distribution. The
probability that all six samples derive from the particular parent
system considered is the product of 24 individual probabilities:

pðParentÞ ¼
Yx¼6

x¼1

p
�
clx

�
pðcux Þp

�
Nðl � 2 km;A1Þx

�

�p
�
Nðu � 10m;A1Þx

�
(16)

The choice of range around csx used to calculate pðcsx Þ(i.e.
csx � 0:05) is arbitrary, and a greater range would give higher values
of p(Parent). Hence the precise values of p(Parent) obtained from
Eq. (16) are unimportant; instead the relative probabilities, which
are unaffected by the range used for csx, are what is significant.

Fig. 11 shows contours of p(Parent) normalised by the maximum
p(Parent) value obtained. There is an equally probable maximum
likelihood solution for any value of Lmax, but, provided Lmax is a few
times larger than A1, the maximum likelihood values of cL, aL, B and n
do not change. Hence the maximum likelihood estimation shown in
Fig.11, which assumes that Lmax¼ 10A1, is essentially independent of
Lmax. This MLE solution implies that the unbiased EPC population is
characterised by cL ¼ 2.685, aL ¼ 0.174, B ¼ 0.00083, n ¼ 1.213.

The applicability of the analytical results to the natural system
are tested by predicting the biased exponents in different sized
sample areas of the EPC (A1 ¼ 2.5 and 5 km) based on the MLE
solution, and comparing them to the measured exponents (Fig. 2).
This test, shown in Fig. 12, indicates a close match between
obtained and predicted exponents for the cu and cm populations.
The prediction is a less accurate reflection of the mean measured
length population exponents (cl), since the analytical results predict
a slight scaling bias that could not recognised, but is probably
present, in the initial measurements (Fig 2). However, the
maximum discrepancy between measured and predicted cl is only
a small fraction (ca. 12%) of the standard deviation of the measured
(or predicted using Eq. (D2)) exponent. Hence, despite these
discrepancies in mean value of length exponent, the test is a success
and both the analytical results, and the MLE solution, are appro-
priate for the East Pennine coal-field fault system.
5. Conclusions

Power-law exponents for populations of different measures of
fault size show different trends with respect to map sample scale in
the East Pennines Coalfield fault system. Maximum throw pop-
ulations and geometric moment populations have mean exponents
that decrease systematically with decreasing scale. Fault-trace
length population exponents are more naturally variable and are
not demonstrably scale-dependent.

Similar trends are present in a synthetic map with known fault
scaling characteristics and random fault locations, and are caused
by sampling bias. Size bias and censoring bias have opposing
effects, and for fault-trace length populations the two biases appear
to approximately cancel out. For the other population types, the
trends are attributed to a progressive dominance of size bias over
censoring bias in progressively smaller map samples. Orientation
bias is negligible in the orthogonal systems considered.

The scaling biases are rationalised by examining analytically
derived expected length, maximum throw and geometric moment
distributions of areal sub-samples of a fault system with randomly
distributed fault locations and power-law fault sizes. Although
strictly non-power-law, the size distributions can be approximated
to power-law distributions with scale-specific exponents. The best-
fit exponents of the analytically derived expected fault size distri-
butions match closely the average exponents measured in the
synthetic fault map at the same scales.

The results are generalised in Fig. 9, which records bias in the
expected population exponents for the different population types as
a function of map scale, resolution, and the characteristics of the
unbiased fault system. Population exponents deduced from faultmaps
representative of many of those published are unlikely to be biased by
more than 0.1 for the length population, but scaling biases of 0.3 or
more are likely for maximum throw populations. These conclusions
are derived from analysis of idealised systems of randomly-positioned
faults with negligible orientation bias, and power-law exponents in
anisotropic and/or clustered fault systems may scale differently.

The results are applicable to the East Pennines Coalfield fault
system where they have been used to estimate the unbiased parent
population based on six 100 km2 sub-samples. The population
exponents in 6.25 and 25 km2 sub-samples predicted from this
estimate match well the means of the measured values at these
scales.
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Fig. 11. Contours of the relative probability of a parent population having values of n,
cL, aL and B, assuming Lmax ¼ 10A1. Contours in (a) reflect the local maximum proba-
bility case of aL at each combination of cL and n (these probabilities are independent of
B). Contours in (b) assume cL ¼ 2.685, n ¼ 1.213 (i.e. the most likely case in (a)). The
dots indicate the maximum likelihood combination of the four variables.

Fig. 12. Comparison between the scale specific best-fit exponents deduced analytically
from the maximum likelihood estimate of the parent population in the EPC, and the
averages of the measured populations in the EPC map. The arrows indicate the effect of
decreasing sample size from 10 km to 2.5 km in each population type. The black dots
show the estimated parent population exponents. The error bars reflect one standard
deviation of either the measured variability (Y-error bars, see Fig. 2) or the variability
predicted from Eq. (D2) (X-error bars).
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Appendix A

The synthetic map (Fig 3b) is of a system with A0 ¼ 40 km, aL ¼
0.5878, cL¼ 2.80, B¼ 0.000676, n¼ 1.226, Lmax¼ 69722 m and Lmin¼
300 m. Edge effects were considered in its construction as follows:
Eq. (3) gives the number of faults of length L with centres in the area
A2

0, but does not include those faults with centres outside A2
0, which

have some of their length in the area. The centre of a fault of length L,
positioned anywhere in a rectangular area of size A0(A0þ L) centred
on the area A2
0, will be partially or completely sampled in A2

0 (e.g.
Fig. 4). Therefore the number of faults sampled in A2

0, irrespective of
whether the fault centre is in the area or not, is given by:

n0ðL;A0Þ ¼ aLA0ðA0 þ LÞL�cL dL; (A1)

where n0(L, A0) is the number of faults with uncensored lengths in
the range L to Lþ dL which are at least partially sampled in the area
of interest A0

2. The Inverse Transform method (e.g. Pickering et al.,
1995) is applied to the integral of Eq. (A1) to give an uncensored
trace length population. Each fault in this population is assigned to
one of the two orientation directions at random, and the centre-
point of the fault is then chosen as a random location within the
orientation- and length- dependent rectangular area A0(A0 þ L).
This method minimises the number of faults which need to be
placed, while ensuring that the map of interest does not have any
edge effects.
Appendix B

The probable value of Lx is distributed uniformly between the
values of Lxmin and Lxmax reported in Table 3. A uniform distribution of
Lx arises because an equal probability exists that the centre of a fault
sampled by a particular censoring type lies anywhere in the rele-
vant sampling area (Fig. 4). The pdf of Lx is therefore:

f ðLxÞ ¼
�

1
Lxmax � Lxmin

�
for Lxmin � Lx � Lxmax : (B1)

The pdf of censored fault size (f(s)) can be derived from f(Lx)
using the standard method of transformations (e.g. Mendenhall
et al., 1986), whereby

f ðsÞ ¼ f ðLxÞ
����dLx

ds

����: (B2)

The probability of obtaining a censored fault in the size range s
to s þ ds (i.e. p(L/s)) derives directly from f(s):

pðL/sÞ ¼
Zsþds

s

f ðsÞds: (B3)
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dLx/ds (Eq. B2) is obtained within the limits of validity of Lx listed
in Table 3 by restating the equations given in Table 2 as a function of
Lx, and differentiating. For example, consider the censored
maximum fault throw (i.e. s ¼ u), for faults of size A1 < L � 2A1,
subject to censoring type C. For these faults we have u ¼ 2BLn�1Lx

for 0 < Lx � L/2, therefore Lx ¼ u=ð2BLn�1Þ for 0 < u � BLn.
Differentiating, we obtain dLx=du ¼1=ð2BLn�1Þ. Replacing these in
Eqs. (B1) and (B2) gives f(u)¼1/(BLn) for 0 < u � BLn and A1<L�2A1.
From this it follows (Eq. (B3)) that p(L / s)¼du/(BLn), for the same
limits of u and L.

For censoring type C at all three scales and for censoring type E for
the largest scale, u is a function of Lx (Tables 2 and 3). Applying the
approach of Eq. (B3) to these four cases, we obtain probabilities given
in Eq. (9). Note that Eq. (9a) derives from censoring type C for both
small and medium faults, as both the expression and limits of f(u) are
the same for these faults. Note also that the sampled maximum
throws of faults subjected to censoring types A, B and D do not
depend on Lx (Table 2), and for these faults u¼BLn and p(L/s)¼1.

Appendix C

The numerical solution to Equation (8) for geometric moments
is based on the trapezium rule for integration and takes the
following steps:

Step 1. Choose a value of m for which to evaluate N(m,A1), and use
a constant value of dm for all values of m.

Step 2. Choose a length in the range Lmin < L < Lmax, incrementing
by a small value (dL) each time this step is repeated.

Step 3. Calculate the probable number of faults with lengths in the
range L to L þ dL and with centres contained in A0

2 (i.e.
N(L,A0); Eq. (3)).

Step 4. For censoring type B to E determine pðL;A1jXÞ. These
probabilities are given in Table 3.

Step 5. For the value of L being considered, and for each censoring
type for which pðL;A1jXÞ >0, there is one possible range of
Lx that can give rise to the target m in the range m to m þ
dm. (Table 2). The probability of obtaining Lx in this range
(i.e. p(L / m)) is determined from the uniform distribution
of Lx (Eq. (B1), Table 3).

Step 6. The product of N(L,A0), pðL;A1jXÞ and p(L / m) (Steps 3–5),
summed for each possible censoring type, is the total
number of faults with m in the range m to m þ dm deriving
from the value of L in question.

Step 7. Repeat Steps 2–6 for all values of L, to obtain the total
number of faults of size m in A1 deriving from all possible
values of L. (i.e. N(m,A1)).

Step 8: Repeat Steps 1–7 for the full range of m to obtain the full
distribution of N(m,A1).

Censoring type A is not included in this numerical treatment,
because N(m,A1) deriving from censoring type A can be determined
analytically, and then simply added to the value of N(m,A1) deter-
mined numerically for the other censoring types using the steps
outlined above.
Appendix D

The distribution of N(s,A1) around Nðs;A1Þ is characterised by
the Poisson distribution:

pðNðs;A1ÞÞ ¼
e�Nðs;A1ÞNðs;A1ÞNðs;A1Þ

Nðs;A1Þ!
(D1)
where p(N(s,A
1)) is the probability that the sample contains exactly

N(s,A1) faults given that the expected number of faults is Nðs;A1Þ. A
Poisson distribution is appropriate given the assumption that fault
centres are randomly located.

The distribution of cs around cs is described with a general
expression derived from Monte Carlo simulation. Many thousands
of samples of trace length or maximum throw populations were
drawn from various distributions, with the number of faults in the
sample selected using a Poisson distribution (Eq. (13) defines the
total expected number, N), and their sizes drawn from the analyt-
ically derived pdfs (Eq. (14)). For each sample, the population slope
(cs) was estimated using a log-frequency plot and the distribution
in cs for all samples was analysed as a function of the variables
defining the input size distribution. Overall, cs was found to be
approximately normally distributed with a mean slope equal to the
expected slope (cs) and with a standard deviation ðscs Þ that
approximates:

scs z1:32ðcs � 1ÞN�0:4; (D2)

where N is the expected number of faults in the sample.
This empirically derived expression matches the measured

variability in the population slopes of the synthetic map (Fig. 3) as
well as those measured in other Monte Carlo simulations covering
a wider range of N and cs. It predicts slightly greater values of ðscs Þ
than the equivalent expression derived by Pickering et al. (1995),
and this result must be in part because we include variations in N in
our Monte Carlo simulations through use of the Poisson distribu-
tion, but may also be a consequence of a different implementation
of the log-interval method (i.e. the sizes of the bins and amount of
overlap between them).
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